Tetrahedron Letters, Vol.26, No.35, pp 4167-4170, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain ©1985 Pergamon Press Ltd.

THE SYNTHESIS OF INDOLIZIDINES BY INTRAMOLECULAR ENE CYCLIZATIONS. PREPARATION OF (E)-ALKYLIDENE ANALOGS OF PUMILIOTOXIN A.

> Larry E. Overman* and Dominique Lesuisse Department of Chemistry, University of California Irvine, California 92717

Summary: 6-Alkylidene-8-hydroxyindolizidines 4 can be prepared by Lewis acidcatalyzed intramolecular ene cyclization of proline-derived ketones 3.

The (Z)-6-alkylideneindolizidine ring is the common structural feature of the pumiliotoxin A alkaloids,¹ e.g. <u>1</u> and <u>2</u>. As a result of the significant cardiotonic activity of pumiliotoxin $B^{1,2}$ and simpler analogs,² and the scarcity of these natural products in nature,¹ chemical synthesis³ of indolizidines

of this type is important. The 3-alkylidenecyclohexanol portion of the pumiliotoxin A alkaloids, in particular the axial nature of the C-8 hydroxyl group,¹ suggests that these alkaloids might be prepared by a Type II intramolecular ene reaction.^{4,5} In this communication, we report the successful synthesis

of indolizidines 4 by the intramolecular ene strategy of eq 1.

The cyclization substrates $6-8^6$ were prepared (30-45% overall yield) from proline and the corresponding allylic bromide 5^7 as summarized in eq 2. Unsaturated ketone 6 was best cyclized in the presence of 2 equiv of freshly sublimed AlCl₃ (CH₂Cl₂, 25°C, 1.5 h)⁸. Basic workup, followed by chromatography on alumina (activity III, 9:1 hexane-ethyl acetate) gave⁹ alkylidene indolizidine 9^{10} and chloride 10^{10} in yields of 27% and 39%, respectively. The stereostructure of 9, followed from the close similarity of its ¹H and ¹³C NMR spectra with those of pumiliotoxin 251D (2),¹¹ see Table. On the basis of the ¹³C NMR spectra, chloride <u>10</u> likely has the same relative stereochemistry at C-8 and C-8a, although we have no experimental evidence for the stereochemistry at

(a) K₂CO₃, DMF, rt; (b) LiOH (leq), THF~H₂O, rt; toluene azeotrope; (c) CH₃Li (leq), Et₀O, 25-40°C.

C-6. A variety of other Lewis acids were ineffective (e.g. $BF_3.OEt_2$, Me_2AlCl) or afforded complex product mixtures (e.g. $EtAlCl_2$ gave significant amounts of reduction product <u>ll</u>).

Cyclization of unsaturated ketone $\underline{7}$ was accomplished in significantly higher yield (91% after chromatography on silica gel) under identical conditions (2 eq AlCl₃, 1.5 h, 25^oC) to provide a 3:1 mixture of alkylidene isomers <u>12</u> and <u>13</u>. This clean reaction demonstrates that intramolecular ene cyclization in this series is highly diastereoselective in forming the new C-8 stereocenter and that it is not essential to use alkyl aluminum halide catalysts⁸ to obtain tertiary alcohol products^{8b} in high yield from Lewis acid - catalyzed ene cyclizations of ketones. The alkylidene isomers could be separated on alumina (activity III, 9:1 hexane-ethyl acetate) and the minor isomer <u>13¹⁰</u> was identical with a sample of pumiliotoxin "nor-ll-methyl-237A" that we had previously prepared ^{3b} by stereospecific iminium ion-vinylsilane cyclization. The major (E)-isomer <u>12¹⁰</u> showed a diagnostic upfield shift¹² for C-7 (6.2 ppm relative to 9) in the ¹³C NMR spectrum.

In an identical fashion, $\underline{8}$ was cyclized to give alkylidene indolizidines $\underline{14}$ and $\underline{15}$ in a 6:1 ratio, together with two uncharacterized minor products.

Compound	R ¹	R ²	¹³ C NMR							¹ H NMR ^b				
			C-1	C-2	C-3			C-7	C-8	C-8a	H-5a	H-5 <i>B</i>	H-10	Ref.
<u>9</u>	н	H	23.3	21.3	54.5	59.3	142.1	47.5	65.8	71.3	3.45(11)	2.62(11	4.92,4.84	
251D(<u>2</u>)	(R)-1- Me- pentyl		23.3	21.1	54.6	53.2	129.8	48.9	68.3	71.8	3.78(12)	2.34(12)	5.05(9.5)	3a
nor-11- Me-237A (<u>13</u>)	n-Bu	н	23.3	21.1	52.8	54.6	128.0	48.9	68.4	71.7	3.80(12)	2.34(12)	5.26(8)	3Ь
<u>15</u>	i-Pr	н	23.6	21.3	54.7	53.1	129.5	48.9	68.5	71.9	3.79(12)	2.32(12)	5.10(9.8)	
<u>12</u>	н	n-Bu	23.5	21.2	54.6	61.1	128.6	41.3	68.5	72.2	3.35(11)	2.62(11)	5.44(6.4)	
<u>14</u>	н	i-Pr	23.4	. 21. 2	54.5	61.0	129.4	41.4	68.4	72.1	3.30(11)	2.59(11)	5.25(9.3)	
<u>10</u>	HC1	adduct	23.1	21.2	54.3	66.3	68.5	50.9	68.5	71.6	3.24(11)			

Table: ¹³C and ¹H NMR Data for Alkylideneindolizidines 4 and Chloride 10.⁴

^aIn CDC1₃; ppm rel to TMS. ^bCoupling constants (J) in Hz are in parentheses.

Chromatography on alumina (activity IV, 20:1 hexane-ethyl acetate) provided pure samples of $\underline{14}^{10}$ and $\underline{15}^{10}$ in yields of 50% and 9%, respectively. Stereochemical assignments again followed unambiguously from NMR spectra (Table). Particularly diagnostic was the upfield¹² shift of carbon-7 in the (E)-isomer $\underline{14}$, and the upfield shift of carbon-5, and the corresponding downfield shift¹³ for hydrogen-5¢, in the (Z)-isomer $\underline{15}$.

The stereoselectivity of the cyclization reaction appears to increase with the steric bulk of the alkylidene side chain. This result suggests that ene cyclization of the AlCl₃ complex of 3^{14} occurs in an essentially concerted manner.¹⁵ Such a process would favor loss of the diastereotopic hydrogen which would place the alkyl group in the less sterically congested R² position of <u>3</u>. We consider a stepwise process proceeding <u>via</u> a discrete C-6 cation to be much less likely, since there is no obvious reason that such a cation should undergo stereoselective deprotonation.

In conclusion, a new synthesis of indolizidines is reported that affords, with modest stereoselectivity, (E)-alkylidene analogs of the pumiliotoxin A alkaloids. Significantly, these syntheses demonstrate that Lewis-acid catalyzed intramolecular ene reactions can be successfully employed with strongly basic substrates.

<u>Acknowledgment:</u> This study was supported by PHS Grant HL-25854 and assisted by NSF Departmental instrumentation grants. L.E.O. also aknowledges support from the Camille and Henry Dreyfus and Alexander von Humboldt Foundations.

References and Notes

 Reviews: (a) Daly, J.W. Prog. Chem. Org. Nat. Prod. <u>1982</u>, <u>41</u>, 205. (b) Witkop, B.; Gössinger, E. In "The Alkaloids"; Brossi, A., Ed.; Academic Press: New York, 1983; Vol. 21, Chapter 5.

- See Daly, J.W.; McNeal, E.T.; Overman, L.E.; Ellison, D.H. J. Med. Chem. 1985, in press; and references therein.
- 3. (a) Overman, L.E.; Bell, K.L.; Ito, F. J. Am. Chem. Soc. 1984, 106, 4192.
 (b) Overman, L.E.; Bell, K.L. <u>ibid.</u> 1981, 103, 1851. (c) Overman, L.E.; Goldstein, S.W. <u>ibid.</u> 1984, 106, 5360.
- For reviews, see Oppolzer, W.; Snieckus, V. <u>Angew. Chem. Int. Ed.</u> <u>1978</u>, <u>17</u>, 476. Hoffmann, H.M.R. <u>ibid</u>. <u>1969</u>, 8, 556.
- 5. For earlier demonstrations of this strategy for preparing axial cyclohexanols in the terpene series, see Andersen, N.H.; Uh, H.-S.; Smith, S.E.; Wutz, P.G.M. J. Chem. Soc., Chem. Commun. 1972, 956. McCurry, P.M.; Singh, R.K. <u>Tetrahedron Lett.</u> 1973, 3325. Andersen, N.H.; Ladner, D.W. Synthetic Commun. 1978, 8, 449.
- 6. The ketones prepared in this investigation were racemic. However, the preparation of ketones of this type with high enantiomeric purity should be possible, see ref. 3c.
- 7. Halides <u>5</u> (R=n-Bu, i-Bu) were prepared in 30-40% overall yield from 2,3-dibromopropene in 4 steps: (a) RMgBr, Et_2O , refl; (b) t-BuLi (2 eq), THF, -78 ^OC; DMF, rt; 0.1 <u>N</u> HCl; (c) NaBH₄, CeCl₃, MeOH-H₂O, rt; (d) Ph₃P, CBr₄, CH₂Cl₂, refl.
- (a) For a review of the Lewis acid-catalyzed ene reactions, see Snider, B. <u>Accts. Chem. Res. 1980</u>, <u>13</u>, 426. (b) For recent examples of Lewis acid-catalyzed intramolecular ene cyclizations of ketones, see Jackson, A.C.; Goldman, B.E.; Snider, B. <u>J. Org. Chem. 1984</u>, <u>49</u>, 3988.
- 9. The ratio of <u>9</u> and <u>10</u> was extremely sensitive to the reaction conditions suggesting that 10 is a secondary product formed by HCl addition to 9.
- 10. New compounds were homogeneous by TLC analysis and showed appropriate 250 MHz ¹H NMR, 63 MHz ¹³C NMR, IR and mass spectra. Molecular composition of key intermediates was confirmed by high resolution MS.
- 11. Tokuyama, T.; Daly, J.W.; Highet, R.J. Tetrahedron 1984, 40, 1183.
- 12. Stothers, J.B. "Carbon-13 NMR Spectroscopy"; Academic Press: New York, 1972; pp 112-118.
- 13. Jackman, L.M.; Sterhell, S. "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd Ed.; Pergamon Press: Oxford, 1969; pp 71-72, 204-207.
- 14. Under the conditions employed it is likely that the nitrogen and the carbonyl oxygen are coordinated to separate molecules of AlCl₃.
- 15. For a recent unambiguous demonstration of concert in a quite different Lewis acid promoted ene cyclization, see Oppolzer, W.; Mirza, S. <u>Helv.</u> <u>Chem. Acta 1984</u>, <u>67</u>, 730.

(Received in USA 6 June 1985)