Tetrahedron Letters, Vol.26, No.35, pp 4167-4170, 1985 0040-4039/85 \$3.00 + .00
Printed in Great Britain 61985 Pergamon Press Ltd. Printed in Great Britain

THE SYNTHESIS OF INDOLIZIDINES BY INTRAMOLECULAR ENE CYCLIZATIONS. PREPARATION OF (E)-ALKYLIDENE ANALOGS OF PUMILIOTOXIN A.

> Larry E. Overman* and Dominique Lesuisse Department of Chemistry, University of California Irvine, California 92717

Summary: 6-Alkylidene-8-hydroxyindolizidines 4 can be prepared by Lewis acidcatalyzed intramolecular ene cyclization of proline-derived ketones 2.

The (Z)-6-alkylideneindolizidine ring is the common structural feature of the pumiliotoxin A alkaloids, 1 e.g. <u>1</u> and <u>2</u>. As a result of the significant cardiotonic activity of pumiliotoxin $\mathtt{B}^1{}'{}^2$ and simpler analogs, 2 and the scarcity of these natural products in nature, $^{\rm l}$ chemical synthesis $^{\rm 3}$ of indolizidines

of this type is important. The 3-alkylidenecyclohexanol portion of the pumiliotoxin A alkaloids, in particular the axial nature of the C-8 hydroxyl group, $^{\mathrm{l}}$ suggests that these alkaloids might be prepared by a Type II intramolecular ene reaction.^{4,5} In this communication, we report the successful synthesis

of indolizidines $\frac{4}{3}$ by the intramolecular ene strategy of eq 1.

The cyclization substrates $\underline{6-8}^6$ were prepared (30–45% overall yield) from proline and the corresponding allylic bromide 5^7 as summarized in eq 2. Unsaturated ketone 6 was best cyclized in the presence of 2 equiv of freshly sublimed A1C1₃ (CH₂C1₂, 25^oC, 1.5 h)⁸. Basic workup, followed by chromatography on alumina (activity III, 9:l hexane-ethyl acetate) gave' alkylidene indolizidine $\underline{9}^{10}$ and chloride $\underline{10}^{10}$ in yields of 27% and 39%, respectively. The stereostructure of <u>9</u>, followed from the close similarity of its $^{\mathrm{1}}$ H and $^{\mathrm{13}}$ C NMR spectra with those of pumiliotoxin 251D (2), 11 see Table. On the basis of the 13 C NMR spectra, chloride 10 likely has the same relative stereochemistry at C-8 and C-8a, although we have no experimental evidence for the stereochemistry at

5

6; R=H 7 ; **R = CH2CH2CH2CH3** $8: R = CH₂CH(CH₃)₂$

 (2)

(a) K₂CO₃, DMF, rt; (b) LiOH(leq), THF-H₂O, rt; toluene azeotrope ; (c) CH₃Li (leq), **Et20,** 25-40°C.

C-6. A variety of other Lewis acids were ineffective (e.g. BF_3 . OEt₂, Me₂AlCl) or afforded complex product mixtures (e.g. EtAlCl₂ gave significant amounts of reduction product 11).

COOMe

Cyclization of unsaturated ketone 7 was accomplished in significantly higher yield (91% after chromatography on silica gel) under identical conditions (2 eq AlCl₃, 1.5 h, 25°C) to provide a 3:1 mixture of alkylidene isomers <u>12</u> and 13. This clean reaction demonstrates that intramolecular ene cyclization in this series is highly diastereoselective in forming the new C-8 stereocenter and that it is not essential to use alkyl aluminum halide catalysts 8 to obtain tertiary alcohol products 8b in high yield from Lewis acid - catalyzed ene cyclizations of ketones. The alkylidene isomers could be separated on alumina (activity III, 9:1 hexane-ethyl acetate) and the minor isomer 13^{10} was identical with a sample of pumiliotoxin "nor-ll-methyl-237A" that we had previously prepared3b by ~_ stereospecific iminium ion-vinylsilane cyclization. The _ major (E)-isomer 12^{-8} showed a diagnostic upfield shift $-$ for C-7 (6.2 ppm relative to $\underline{9}$ in the 13 C NMR spectrum.

In an identical fashion, & was cyclized to give alkylidene indolizidines 14 and 15 in a 6:1 ratio, together with two uncharacterized minor products.

Compound	R^1	R^2	$13C$ NMR							H NMR ^D				
							C-1 C-2 C-3 C-5 C-6 C-7 C-8 C-8a				$H - 5a$	$H - 5B$	$H-10$	Ref.
$\overline{2}$	H	H					23.3 21.3 54.5 59.3 142.1 47.5 65.8 71.3				3.45(11)	2.62(11)	4.92.4.84	
251D(2)	$(R) - 1 -$ Me- pentyl	Ħ					23.3 21.1 54.6 53.2 129.8 48.9 68.3 71.8				3.78(12)		$2.34(12)$ 5.05(9.5)	3a
$nor-11-$ Me-237A (13)	n-Bu	H					23.3 21.1 52.8 54.6 128.0 48.9 68.4 71.7				3.80(12)	$2.34(12)$ 5.26(8)		Зb
$\overline{15}$	i-Pr	н					23.6 21.3 54.7 53.1 129.5 48.9 68.5 71.9				3.79(12)		$2.32(12)$ 5.10(9.8)	
12	H	n-Bu					23.5 21.2 54.6 61.1 128.6 41.3 68.5 72.2				3.35(11)		$2.62(11)$ 5.44(6.4)	
14	н	$1 - Pr$					23.4.21.2 54.5 61.0 129.4 41.4 68.4 72.1				3.30(11)		$2,59(11)$ 5.25(9.3)	
10	HCI	adduct					23.1 21.2 54.3 66.3 68.5 50.9 68.5 71.6				3.24(11)			

Table: 13 C and ¹H NMR Data for Alkylideneindolizidines 4 and Chloride 10.⁸

^aIn CDC1₃; ppm rel to TMS. ^bCoupling constants (J) in Hz are in parentheses.

Chromatography on alumina (activity IV, 20:1 hexane-ethyl acetate) provided pure samples of 14^{10} and 15^{10} in yields of 50% and 9%, respectively. Stereochemical assignments again followed unambiguously from NMR spectra (Table). Particularly diagnostic was the upfield¹² shift of carbon-7 in the (E) -isomer 14, and the upfield shift of carbon-5, and the corresponding downfield shift¹³ for hydrogen-5 α , in the (Z)-isomer 15.

The stereoselectivity of the cyclization reaction appears to increase with the steric bulk of the alkylidene side chain. This result suggests that ene cyclization of the AlCl₃ complex of $\underline{3}^{14}$ occurs in an essentially concerted manner.¹⁵ Such a process would favor loss of the diastereotopic hydrogen which would place the alkyl group in the less sterically congested R^2 position of 3. We consider a stepwise process proceeding via a discrete C-6 cation to be much less likely, since there is no obvious reason that such a cation should undergo stereoselective deprotonation.

In conclusion, a new synthesis of indolizidines is reported that affords, with modest stereoselectivity, (E)-alkylidene analogs of the pumiliotoxin A alkaloids. Significantly, these syntheses demonstrate that Lewis-acid catalyzed intramolecular ene reactions can be successfully employed with strongly basic substrates.

Acknowledgment: This study was supported by PHS Grant HL-25854 and assisted by NSF Departmental instrumentation grants. L.E.O. also aknowledges support from the Camille and Henry Dreyfus and Alexander von Humboldt Foundations.

References and Notes

1. Reviews: (a) Daly, J.W. Prog. Chem. Org. Nat. Prod. 1982, 41, 205. (b) Witkop, B.; Gössinger, E. In "The Alkaloids"; Brossi, A., Ed.; Academic Press: New York, 1983; Vol. 21, Chapter 5.

- 2. **See** Daly, J.W.; McNeal, E.T.; Overman, L.E.; Ellison, D.H. J. Med. Chem. 1985, in press; and references therein.
- 3. (a) Overman, L.E.; Bell, K.L.; Ito, F. J. Am. Chem. Sot. 1984, 106, 4192. (b) Overman, L.E.; Bell, K.L. ibid. 1981, 103, 1851. (c) Overman, L.E.; Goldstein, S.W. ibid. 1984, 106, 5360.
- 4. For reviews, see Oppolzer, W.; Snieckus, V. Angew. Chem. Int. Ed. 1978, 17, 476. Hoffmann, H.M.R. ibid. 1969, 8, 556.
- 5. For earlier demonstrations of this strategy for preparing axial cyclohexanols in the terpene series, see Andersen, N.H.; Uh, H.-S.; Smith, S.E.; Wutz, P.G.M. J. Chem. Soc., Chem. Commun. 1972, 956. McCurry, P.M.; Singh, R.K. Tetrahedron Lett. 1973, 3325. Andersen, N.H.; Ladner, D.W. Synthetic Commun. 1978, 5, 449.
- 6. The ketones prepared in this investigation were racemic. However, the preparation of ketones of this type with high enantiomeric purity should be possible, see ref. 3c.
- 7. Halides 5 (R=n-Bu, i-Bu) were prepared in 30-40% overall yield from 2,3 dibromopropene in 4 steps: (a) RMgBr, Et₂0, refl; (b) t-BuLi (2 eq), THF, -78^oC; DMF, rt; 0.1 <u>N</u> HCl; (c) NaBH₄, CeCl₃, MeOH-H₂O, rt; (d) Ph₃P, CBr₄, CH_2Cl_2 , refl.
- 8. (a) For a review of the Lewis acid-catalyzed ene reactions, see Snider, B. Accts. Chem. Res. 1980, 13, 426. (b) For recent examples of Lewis acid-catalyzed intramolecular ene cyclizations of ketones, see Jackson, A.C.; Goldman, B.E.; Snider, B. J. Org. Chem. 1984, 49, 3988.
- 9. The ratio of 9 and 10 was extremely sensitive to the reaction conditions suggesting that 10 is a secondary product formed by HCl addition to 9 .
- 10. New compounds were homogeneous by TLC analysis and showed appropriate 250 MHz $^{\rm l}$ H NMR, 63 MHz $^{\rm l}$ 3C NMR, IR and mass spectra. Molecular composition of key intermediates was confirmed by high resolution MS.
- 11. Tokuyama, T.; Daly, J.W.; Highet, R.J. Tetrahedron 1984, 40, 1183.
- 12. Stothers, J.B. "Carbon-13 NMR Spectroscopy"; Academic Press: **New** York, 1972; pp 112-118.
- 13. Jackman, L.M.; Sterhell, S. "Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry", 2nd Ed.; Pergamon Press: Oxford, 1969; pp 71-72, 204-207.
- 14. Under the conditions employed it is likely that the nitrogen and the carbonyl oxygen are coordinated to separate molecules of $A1Cl₂$.
- 15. For a recent unambiguous demonstration of concert in a quite different Lewis acid promoted ene cyclization, see Oppolzer, W.; Mirza, S. Helv. Chem. Acta 1984, 67, 730.

(Received in USA 6 June 1985)